Fig.7-11 Example of moment distribution in frame 70 70 30 30 20 20 20 20 10 10 80 10 10
Fig.7-11 Example of moment distribution in frame 10 10 10 70 30 20 20 20 20 70 30 10 80
Fig.7-10 Rigid frame rough calculation 情况 弯矩传递系数(Mc) 在梁中产生a转角时 由远端固定程度决定 所需的力矩(M) 的刚度系数(FFF) 1.完全固定 Mc=1/2 M=1 FFF=1 无转动 0<Mc<1/2 2.部分固定 (如1/3) (由其它杆件) 1>M>3/4 1>FFF>3/4 (如7/8) (如7/8) 0<a'<a/2 Mc=0 3.铰接 M=3/4 FFF=3/4 a=a/2
Fig. 7-10 Rigid frame rough calculation
7.4.2 Rigid frame under horizontal loads (横向荷载作用下刚架内力简化计算) -Portal Method(算弯矩+剪力) solving the moment and shear distribution at the columns and beams over the frame -Cantilever Method=Footprint(算轴力) solving the axial forces in the columns caused by the overturn moments
7.4.2 Rigid frame under horizontal loads (横向荷载作用下刚架内力简化计算) -Portal Method(算弯矩+剪力) solving the moment and shear distribution at the columns and beams over the frame -Cantilever Method=Footprint(算轴力) solving the axial forces in the columns caused by the overturn moments
Fig.7-18 Cantilever method for column forces 本 COLUMN#'S: 1 NA % d
Fig. 7-18 Cantilever method for column forces
7.4.2 Rigid frame under horizontal loads -Portal Method solving the moment and shear distribution at the columns and beams over the frame
7.4.2 Rigid frame under horizontal loads -Portal Method solving the moment and shear distribution at the columns and beams over the frame