经典电动力学导论 Let there be light A(r)=A(z)er B=V×A 0A(z) dx dy dz b(ze az A(z)00 对回路1应用安培环路定律∮B·d=u0Inc得:B(z)=B0(B与z无关) 对回路2应用安培环路定律∮B·d=10Ienc得:2Bl=μ0Ienc=0al 复旦大学物理系 林志方徐建军2
Let there be light ²;>Ä寨 1oÙµ·^| § 4.2 A~(r~) = A(z) eˆx, B~ = ∇ × A~ = eˆx eˆy eˆz ∂ ∂x ∂ ∂y ∂ ∂z A(z) 0 0 = ∂A(z) ∂z eˆy = B(z) eˆy 飴 1 A^S´½Æ I B~ · d~l = µ0 Ienc µB(z) = B0 (B0 z Ã') 飴 2 A^S´½Æ I B~ · d~l = µ0 Ienc µ2Bl = µ0Ienc = µ0αl EÆ ÔnX Mï 2
经典电动力学导论 Let there be light A(r)=A(z)er B=V×A e0 0A(z) az A(z)00 对回路1应用安培环路定律∮B·d=u0Inc得:B(z)=B0(B与z无关) 对回路2应用安培环路定律∮B·d=10Ienc得:2Bl=μ0Ienc=0al + poa ey for z<o 从而:B= Hoc e for z>0 复旦大学物理系 林志方徐建军2
Let there be light ²;>Ä寨 1oÙµ·^| § 4.2 A~(r~) = A(z) eˆx, B~ = ∇ × A~ = eˆx eˆy eˆz ∂ ∂x ∂ ∂y ∂ ∂z A(z) 0 0 = ∂A(z) ∂z eˆy = B(z) eˆy 飴 1 A^S´½Æ I B~ · d~l = µ0 Ienc µB(z) = B0 (B0 z Ã') 飴 2 A^S´½Æ I B~ · d~l = µ0 Ienc µ2Bl = µ0Ienc = µ0αl l µB~ = + 1 2 µ0α eˆy for z < 0 − 1 2 µ0α eˆy for z > 0 EÆ ÔnX Mï 2
经典电动力学导论 Let there be light A(r)=A(z)er B=V×A e0 0A(z) b(ze A(z)00 对回路1应用安培环路定律∮B·d=u0Inc得:B(z)=B0(B与z无关) 对回路2应用安培环路定律∮B·d=10Ienc得:2Bl=μ0Ienc=0al + poa ey for z<o Oa已 for z<0 从而:B= 比较:E 11 Hoc e for z>0 gge for z>0 ∈ 复旦大学物理系 林志方徐建军2
Let there be light ²;>Ä寨 1oÙµ·^| § 4.2 A~(r~) = A(z) eˆx, B~ = ∇ × A~ = eˆx eˆy eˆz ∂ ∂x ∂ ∂y ∂ ∂z A(z) 0 0 = ∂A(z) ∂z eˆy = B(z) eˆy 飴 1 A^S´½Æ I B~ · d~l = µ0 Ienc µB(z) = B0 (B0 z Ã') 飴 2 A^S´½Æ I B~ · d~l = µ0 Ienc µ2Bl = µ0Ienc = µ0αl l µB~ = + 1 2 µ0α eˆy for z < 0 − 1 2 µ0α eˆy for z > 0 'µE~ = + 1 2 1 0 σq eˆz for z < 0 − 1 2 1 0 σq eˆz for z > 0 EÆ ÔnX Mï 2
经典电动力学导论 Let there be light A(r)=A(z)er B=V×A 0A(z) dx dy dz b(ze A(z)00 对回路1应用安培环路定律∮B·d=u0Inc得:B(z)=B0(B与z无关) 对回路2应用安培环路定律∮B·d=10Ienc得:2Bl=μ0Ienc=0al + poa ey for z<o Oa已 for z<0 从而:B= 比较:E 11 Hoc e for z>0 gge for z>0 ∈ 例2:两平行无穷大平板,均匀带电士σa,以速度 =υen运动,求(1)空间磁场;(2)作用于上平板 单位面积的磁力;(3)当速度多大时,磁力等于电力。 复旦大学物理系 林志方徐建军2
Let there be light ²;>Ä寨 1oÙµ·^| § 4.2 A~(r~) = A(z) eˆx, B~ = ∇ × A~ = eˆx eˆy eˆz ∂ ∂x ∂ ∂y ∂ ∂z A(z) 0 0 = ∂A(z) ∂z eˆy = B(z) eˆy 飴 1 A^S´½Æ I B~ · d~l = µ0 Ienc µB(z) = B0 (B0 z Ã') 飴 2 A^S´½Æ I B~ · d~l = µ0 Ienc µ2Bl = µ0Ienc = µ0αl l µB~ = + 1 2 µ0α eˆy for z < 0 − 1 2 µ0α eˆy for z > 0 'µE~ = + 1 2 1 0 σq eˆz for z < 0 − 1 2 1 0 σq eˆz for z > 0 ~ 2µü²1á²§þ!>±σq§±Ý v~ = v eˆx $ħ¦(1) m^|¶(2) ^uþ² ü ¡È^å¶(3) Ýõ§^åu>å" EÆ ÔnX Mï 2
经典电动力学导论 Let there be light A(r)=A(z)er B=V×A 0A(z) dx dy dz b(ze A(z)00 对回路1应用安培环路定律∮B·d=u0Inc得:B(z)=B0(B与z无关) 对回路2应用安培环路定律∮B·d=10Ienc得:2Bl=μ0Ienc=0al + poa ey for z<o Oa已 for z<0 从而:B= 比较:E 11 Hoc e for z>0 gge for z>0 ∈ 例2:两平行无穷大平板,均匀带电士σa,以速度 +og =υen运动,求(1)空间磁场;(2)作用于上平板 单位面积的磁力;(3)当速度多大时,磁力等于电力。 q 复旦大学物理系 林志方徐建军2
Let there be light ²;>Ä寨 1oÙµ·^| § 4.2 A~(r~) = A(z) eˆx, B~ = ∇ × A~ = eˆx eˆy eˆz ∂ ∂x ∂ ∂y ∂ ∂z A(z) 0 0 = ∂A(z) ∂z eˆy = B(z) eˆy 飴 1 A^S´½Æ I B~ · d~l = µ0 Ienc µB(z) = B0 (B0 z Ã') 飴 2 A^S´½Æ I B~ · d~l = µ0 Ienc µ2Bl = µ0Ienc = µ0αl l µB~ = + 1 2 µ0α eˆy for z < 0 − 1 2 µ0α eˆy for z > 0 'µE~ = + 1 2 1 0 σq eˆz for z < 0 − 1 2 1 0 σq eˆz for z > 0 ~ 2µü²1á²§þ!>±σq§±Ý v~ = v eˆx $ħ¦(1) m^|¶(2) ^uþ² ü ¡È^å¶(3) Ýõ§^åu>å" EÆ ÔnX Mï 2