For hexagonal: CoS pp 3.a h2h2+k1k2+ 12+(h1k2+h2k1) 2+2+3)2+2 3.a +k2+()22+h2k2 4 C 4 9. The angle o between [ui vI wil and [a2v2w2]
For hexagonal: cos = + + + + + + + + + + 2 2 2 2 2 2 2 2 1 1 2 2 1 2 2 1 2 1 1 2 1 2 2 1 2 1 2 1 2 2 ( ) 4 3 ( ) 4 3 ( ) 2 1 ( ) 4 3 l h k c a l h k h k c a h k l l h k h k c a h h k k 9. The angle between [u1 v1 w1 ] and [u2 v2 w2 ]
For cubic uiu,++W1W cos pp 2 1+V1+w 1V2+n2+1 For orthorhombic uia+v,vob+wwoc cos pp (4a)2+(vb)2+(c)2y( (l2a)2+(2b)2+(2c)
For orthorhombic: cos = 2 2 2 2 2 2 2 1 2 1 2 1 2 1 2 2 1 2 2 1 2 (u a) (v b) (w c) (u a) (v b) (w c) u u a v v b w w c + + + + + + For cubic: cos = 2 2 2 2 2 2 2 1 2 1 2 1 1 2 1 2 1 2 u v w u v w u u v v w w + + + + + +