Jacobi Basic Iterative Methods Implementation x×× known values x unknown values 2,T+1 +1, Jacobi iteration 1=(2+1+71+h2) SMA-HPC⊙2003MT Solution Methods: Iterative Techniques 10
Basic Iterative Gauss-Seidel Methods ××××× 1 known values x unknown values →,?+1 +1 ,2+1, Gauss-Seidel iteration (consider most recent iterate u+1=号(+1++1+b2f) SMA-HPC⊙2003MT Solution Methods: Iterative Techniques 11
Gauss-Seidel Basic Iterative Methods Matrix Form Split A D: Diagonal A=D-L-U L: Lower trianqular U: Upper triangular Au=f becomes (D-L-U)u=f Iterative method (D-L)u+=Uu+f SMA-HPC⊙2003MT Solution Methods: Iterative Techniques 12