例:P, =0.1MPa,V = 0.05m如图所示,气缸初始状态下:V, = 2V现对气缸加热,使气体膨胀至:已知:初始状态下,弹簧与气缸接触但不受力,弹簧刚度K =150kN/m大气压力 P。=0.1MPa活塞面积A=0.25m2求:1)气缸内终了压力和气体做的功?Q2)若活塞与气缸间有摩擦力f=10kN存在,气体做的功是多少?解:取气缸内的气体为系统,气缸内壁为边界:准静态过程:终了状态为平衡状态,活塞两侧的受力相等:P2'A=Po·A+F F=KxV2-V-0.1-0.05= 0.2mx=A0.25F150x0.2=0.1+= 0.22MPa:: P2 = Po +A0.25
例: 如图所示,气缸初始状态下: Q 3 1 1 p V = = 0.1MPa, 0.05m 现对气缸加热,使气体膨胀至: 2 1 V V = 2 已知:初始状态下,弹簧与气缸接触但不受力,弹簧刚度 K =150kN/m 大气压力 0 p = 0.1MPa 活塞面积 2 A = 0.25m 求:1) 气缸内终了压力和气体做的功? 2) 若活塞与气缸间有摩擦力 存在, 气体做的功是多少? 解: 准静态过程 终了状态为平衡状态,活塞两侧的受力相等 2 0 2 1 2 0 0.1 0.05 0.2m 0.25 150 0.2 0.1 0.22MPa 0.25 p A p A F F Kx V V x A F p p A = + = − − = = = = + = + = 取气缸内的气体为系统,气缸内壁为边界 f =10kN
.:.W = [Rdx = [(po·A+ F)dx = [(po A+ Kx)dx20.210.2+K= Po Ax10020.22=8kJ=0.1x0.25x0.2±1502利用示功图求解pP2p2)·(V2 -V)×(0.1+0.22)×(0.1- 0.05) = 8kJ2PiVV
0 0 2 0.2 0.2 0 0 0 2 d ( )d ( )d 2 0.2 0.1 0.25 0.2 150 8kJ 2 W R x p A F x p A Kx x x p A x K = = + = + = + = + = 利用示功图求解 p V 1 p 2 p V1 V2 1 2 2 1 1 ( ) ( ) 2 1 (0.1 0.22) (0.1 0.05) 8kJ 2 = + − W p p V V = + − =
若活塞与气缸间存在摩擦,不可逆因素出现在系统外,为外部不可逆过程,这时气体需要抵抗外力R=F+f做功。:.W ={Rdx=[(po· A+F+f)dx=10kJ在工程实际中,将活塞和气缸作为整体考虑,注重整套装置,即活塞的有效输出功这时,摩擦成为内部不可逆因素,整套装置对外做功.. W = [ Rdx= J(po · A+ F)dx = 8kJ但是由于内部摩擦的存在,使得气体必须克服摩擦做功,因此气体必须做功:.W = [Rdx= [(po· A+F+f)dx=10kJ
若活塞与气缸间存在摩擦,不可逆因素出现在系统外,为外部不可逆过程,这时气体 需要抵抗外力 R F f = + 做功。 0 = = + + = W R x p A F f x d ( )d 10kJ 在工程实际中,将活塞和气缸作为整体考虑,注重整套装置,即活塞的有效输出功, 这时,摩擦成为内部不可逆因素,整套装置对外做功 0 = = + = W R x p A F x d ( )d 8kJ 但是由于内部摩擦的存在,使得气体必须克服摩擦做功,因此气体必须做功 0 = = + + = W R x p A F f x d ( )d 10kJ
Energy Transfer by Heat·Definitions-Energytransferonlybyatemperaturedifference-Heat is energy in transformation; path function.Q= [~8Q=Q12 ±Q2 -Q· UnitskJNm· Heat per unit mass(J/kg)q=m
Energy Transfer by Heat 2 12 2 1 1 Q Q Q Q Q = = − δ (J/kg) m Q q = • Definitions — Energy transfer only by a temperature difference -Heat is energy in transformation;path function. • Units • Heat per unit mass N m kJ
Energy Transfer by Heat· Sign ConventionQ > 0: heat transfer to the systemQ < O: heat transfer from the systemQ = 0: adiabaticQ= TdS1(T1,S1)TdS = QrTds2(T2,S2)q=熵S Entropyds
• Sign Convention Q > 0: heat transfer to the system Q < 0: heat transfer from the system Q = 0: adiabatic Energy Transfer by Heat T S ds 1(T1 ,s1 ) 2(T2 ,s2 ) 2 12 1 2 1 δ d d d Q T S Q T S Q q T s = = = = S - Entropy 熵