几个有趣的同构结论 Theorem 9.3 If G is a cyclic group of order n,then G is isomorphic to Zn. Corollary 9.4 If G is a group of order p,where p is a prime number,then G is isomorphic to Zp. Theorem 9.6(Cayley)Every group is isomorphic to a group of permu- tations
几个有趣的同构结论
Carley定理的证明 Theorem 9.6(Cayley)Every group is isomorphic to a group of permu- tations. ·从任意一个群G出发,构造一个置换群G’: ·由置换函数组成的群 G={g:g∈G} ·由G出发,构造置换函数,置换函数的个数和群G相同 入g(a)=ga. ·构造群G到置换群G’的同构函数 p:g→入g ·证明这个函数的双射 ·证明这个函数是G到G’的同构
Carley定理的证明 • 从任意一个群G出发,构造一个置换群G’: • 由置换函数组成的群 • 由G出发,构造置换函数,置换函数的个数和群G相同 • 构造群G到置换群G’的同构函数 • 证明这个函数的双射 • 证明这个函数是G到G’的同构
问题4:为什么下面的结论不叫“定理”? Proposition 9.7 Let G and H be groups.The set Gx H is a group under the operation (g1,h1)(g2,h2)=(91g2,hih2)where g1,92 EG and h1,h2EH. Example 9.The group Z2,considered as a set,is just the set of all binary n-tuples.The group operation is the "exclusive or"of two binary n-tuples. For example, (01011101)+(01001011)=(00010110) 问题5.1:这个符号是什么意思? 问题5.2:这个操作从何而来?
问题4:为什么下面的结论不叫“定理”? 问题5.1:这个符号是什么意思? 问题5.2:这个操作从何而来?
不难理解的几个定理: Theorem 9.8 Let (g,h)G x H.If g and h have finite orders r and s respectively,then the order of (g,h)in Gx H is the least common multiple of r and s. Corollary 9.9 Let (91,...,9n)EIIGi.If gi has finite order ri in Gi,then the order of (g,...,gn)in IIGi is the least common multiple of ri,...,rn. 问题6:如果诸ri互素,会有什么结论?
不难理解的几个定理: 问题6:如果诸ri互素,会有什么结论?