正交振幅调制LQAM(QuadratureAmplitudeModulation)举例1可供选择的相位有12种而对于每一种相位有1或2种振幅可供选择由于4bit编码共有16种不同的组合,因此这16个点中的每个点可对应于一种4bit的编码。若每一个码元可表示的比特数越多,则在接收端进行解调时要正确识别每一种状态就越困难11
正交振幅调制 QAM (Quadrature Amplitude Modulation) r (r, ) 可供选择的相位有 12 种, 而对于每一种相位有 1 或 2 种振幅可供选择。 由于4 bit 编码共有16 种不同的 组合,因此这 16 个点中的每个 点可对应于一种 4 bit 的编码。 若每一个码元可表示的比特数越多,则在接收端进行 解调时要正确识别每一种状态就越困难。 举例 11
2.2.3信道的极限容量■任何实际的信道都不是理想的,在传输信号时会产生各种失真以及带来多种干扰。码元传输的速率越高,或信号传输的距离越远,在信道的输出端的波形的失真就越严重。12
2.2.3 信道的极限容量 ◼ 任何实际的信道都不是理想的,在传输 信号时会产生各种失真以及带来多种干 扰。 ◼ 码元传输的速率越高,或信号传输的距 离越远,在信道的输出端的波形的失真 就越严重。 12
数字信号通过实际的信道有失真,但可识别实际的信道心(带宽受限、有噪声、干扰和失真发送信号波形接收信号波形无法识别失真大,实际的信道心(带宽受限、有噪声、干扰和失真)发送信号波形接收信号波形13
数字信号通过实际的信道 ◼ 有失真,但可识别 ◼ 失真大,无法识别 实际的信道 (带宽受限、有噪声、干扰和失真) 发送信号波形 接收信号波形 发送信号波形 实际的信道 (带宽受限、有噪声、干扰和失真) 接收信号波形 13
(1)信道能够通过的频率范围1924年,奈奎斯特(Nyquist)就推导出了著名的奈氏准则。他给出了在假定的理想条件下,为了避免码间串扰,码元的传输速率的上限值,在任何信道中,码元传输的速率是有上限的,否则就会出现码间串扰的问题,使接收端对码元的判决(即识别)成为不可能。如果信道的频带越宽,也就是能够通过的信号高频分量越多,那么就可以用更高的速率传送码元而不出现码间串扰。14
(1) 信道能够通过的频率范围 ◼ 1924 年,奈奎斯特(Nyquist)就推导出了著名 的奈氏准则。他给出了在假定的理想条件下, 为了避免码间串扰,码元的传输速率的上限值。 ◼ 在任何信道中,码元传输的速率是有上限的, 否则就会出现码间串扰的问题,使接收端对码 元的判决(即识别)成为不可能。 ◼ 如果信道的频带越宽,也就是能够通过的信号 高频分量越多,那么就可以用更高的速率传送 码元而不出现码间串扰。 14
(2)信噪比香农(Shannon)用信息论的理论推导出了带宽受限且有高斯白噪声干扰的信道的极限、无差错的信息传输速率。信道的极限信息传输速率C可表达为C= Wlog2(1+S/N) b/sW为信道的带宽(以Hz为单位):S为信道内所传信号的平均功率:N为信道内部的高斯噪声功率。15
(2) 信噪比 ◼ 香农(Shannon)用信息论的理论推导出了 带宽受限且有高斯白噪声干扰的信道的 极限、无差错的信息传输速率。 ◼ 信道的极限信息传输速率 C 可表达为 ◼ C = W log2 (1+S/N) b/s ◼ W 为信道的带宽(以 Hz 为单位); ◼ S 为信道内所传信号的平均功率; ◼ N 为信道内部的高斯噪声功率。 15