Generalize RG(ele2, m=X2=a [X3=1l[X4=1) RG(e2ll,m)={[x2=fx4=0V2]} Step 3 Evaluation and Modification( disjoint Sparseness Complexity (a) Complex 1 [X2-a[X3=1] 15 Complex 2: [X2=f 47 62 (b)Complex 1: x4=1V2 Complex 2: [X2-f (c)Complex 1: X2=a X31] Complex 2: [X4=0V2
Generalize: RG(e1|e2,m)={[x2=a][x3≦1],[X4=1∨2]} RG(e2|e1,m)={[x2=f],[x4=0∨2]} Step 3: Evaluation and Modification(disjoint) Sparseness Complexity (a) Complex 1: [x2=a][x3≦1] 15 2 Complex 2: [x2=f] 47 1 62 3 (b) Complex 1: [x4=1∨2] Complex 2: [X2=f] (c) Complex 1: [x2=a][x3≦1] Complex 2: [X4=0∨2]
(d)Complex 1: [x4=1V2 Complex 2: [x4=0V2 Step 4 The termination criterion is tested Step 5: select new seeds el,e4,e6}{e2,e3,e5e7e8,e9,10} Central events e4 e8 Iteration 2 Step 2 Produce satrs RG(e4e&, m),RG(e8e4, m) RG(e4le8,m)={x2=a]x31]x11x31][x3=0]} RG(e8e4,m){x1=2x2][x3三1}
(d) Complex 1: [x4=1∨2] Complex 2: [x4=0∨2] Step 4: The termination criterion is tested Step 5:select new seeds {e1,e4,e6} {e2,e3,e5,e7,e8,e9,e10} Central events: e4,e8 Iteration 2 Step 2: Produce satrs RG(e4|e8,m ), RG(e8|e4,m) RG(e4|e8,m)={[x2=a][x3≦1],[x1≦1][x3 ≦1],[x3=0]} RG(e8|e4,m)={[x1=2],[x2=f],[x3≧1]}