三、随机解释变量的后果
三、随机解释变量的后果
1、出发点 ·计量经济学模型一旦出现随机解释变量,如果 仍采用OLS法估计模型参数,不同性质的随机解 释变量会产生不同的后果 对回归模型 Y=XB+N (2.7.5) 其OLS参数佔计量为: B=(XXXY=(XX X(XB+N)
1、出发点 • 计量经济学模型一旦出现随机解释变量,如果 仍采用OLS法估计模型参数,不同性质的随机解 释变量会产生不同的后果。 • 对回归模型 Y=XB+N (2.7.5) 其 OLS 参数估计量为: = ( ) = ( ) ( + ) − − X X X Y X X X X 1 1
取期望,有 E(B)=(XXE( XB+XN B+(XX E(XN (2.7.6) 可见,随机解释变量带来什么后果取决于它与 随机误差项是否相关
• 可见,随机解释变量带来什么后果取决于它与 随机误差项是否相关。 取期望,有 E( ) = ( ) E( + ) − X X X X X 1 = + − (X X) (X ) 1 E (2.7.6)
2、随机解释变量与随机误差项不相关 这时采用OLS法估计模型参数,得到的参数估 计量仍然是无偏估计量
2、随机解释变量与随机误差项不相关 • 这时采用OLS法估计模型参数,得到的参数估 计量仍然是无偏估计量