Muticolor if nR(k,l),for any 2-coloring of Km, there exists a red Kk or a blue Ki. R(r;k1,k2,.,k) ifn≥R(r;k1,k2,.,k), for any r-coloring of Kn,there exists a monochromatic ki-clique with color i for some ie{1,2,...,r}. Ramsey Theorem R(r;ki,k2,...,kr)is finite
R(r; k1, k2, ... , kr) Multicolor if n≥ R(k,l), for any 2-coloring of Kn, there exists a red Kk or a blue Kl. if n ≥ R(r; k1, k2, ... , kr), for any r-coloring of Kn, there exists a monochromatic ki-clique with color i for some i∈{1, 2, ..., r}. Ramsey Theorem R(r; k1, k2, ... , kr) is finite
if nz R(r;k1,k2,...,kr), for any r-coloring of Kn,there exists a monochromatic ki-clique with color i for some ic{1,2,...,r}. .coloring:(☒)-1.2…r
if n ≥ R(r; k1, k2, ... , kr), for any r-coloring of Kn, there exists a monochromatic ki-clique with color i for some i∈{1, 2, ..., r}. Kn = [n] 2 ⇥ r-coloring f : [n] ⇥ {1, 2,...,r} 2
Hypergraph ifn≥R(r;k1,k2,…,k), for any r-coloring of ()there exists a monochromatic with color i and lS=k:for some i∈{1,2,,r}. completeuniomtpergaph() roloring
complete t-uniform hypergraph [n] t ⇥ t Hypergraph r-coloring f : [n] ⇥ {1, 2,...,r} if n ≥ Rt(r; k1, k2, ... , kr), for any r-coloring of , there exists a monochromatic with color i and |S|=ki for some i∈{1, 2, ..., r}. [n] t ⇥ S t ⇥