经典电动力学导论 Let there be light 第五章:电磁波的传播§5.1 (4)任意随时间变化的场(分量),通过 Fourier变换,可写成 1 (r,t) F(r, w) 2丌 因此,以频率为自变量[称为在频域( frequency domain)],无源区的麦氏方程可写成: E aB(r iB(7, at ·D( 复旦大学物理系 林志方徐建军4
Let there be light ²;>Ä寨 1ÊÙµ>^ÅD § 5.1 (4) ?¿mCz|£©þ¤§ÏL Fourier C§¤ F (r~, t) = 1 2π Z +∞ −∞ F(r~, ω)e −iωtdω, F(r~, ω) = Z +∞ −∞ F (r~, t)e iωtdt Ïd§±ªÇgCþ [¡3ª (frequency domain) ]§Ã «ð¼§¤µ ∇ × E~ (r~, t) = − ∂B~ (r~, t) ∂t =⇒ ∇ × E~ (r~, ω) = iωB~ (r~, ω) ∇ · D~ (r~, t) = 0 EÆ ÔnX Mï 4
经典电动力学导论 Let there be light 第五章:电磁波的传播§5.1 (4)任意随时间变化的场(分量),通过 Fourier变换,可写成 1 (r,t) F(r, w) 2丌 因此,以频率为自变量[称为在频域( frequency domain)],无源区的麦氏方程可写成: E aB(r V×E(T,u)=iuB3(r,u) at ·D( Ⅴ·D(T,u) 复旦大学物理系 林志方徐建军4
Let there be light ²;>Ä寨 1ÊÙµ>^ÅD § 5.1 (4) ?¿mCz|£©þ¤§ÏL Fourier C§¤ F (r~, t) = 1 2π Z +∞ −∞ F(r~, ω)e −iωtdω, F(r~, ω) = Z +∞ −∞ F (r~, t)e iωtdt Ïd§±ªÇgCþ [¡3ª (frequency domain) ]§Ã «ð¼§¤µ ∇ × E~ (r~, t) = − ∂B~ (r~, t) ∂t =⇒ ∇ × E~ (r~, ω) = iωB~ (r~, ω) ∇ · D~ (r~, t) = 0 =⇒ ∇ · D~ (r~, ω) = 0, EÆ ÔnX Mï 4
经典电动力学导论 Let there be light 第五章:电磁波的传播§5.1 (4)任意随时间变化的场(分量),通过 Fourier变换,可写成 1 (r,t) F(r, w) 2丌 因此,以频率为自变量[称为在频域( frequency domain)],无源区的麦氏方程可写成: V×E(,t)= aB(r, t) →V×E(r,)=uB(T,u) at D(r,t)=0 Ⅴ·D(T,u) 0D(r, V×H(r,t) at 复旦大学物理系 林志方徐建军4
Let there be light ²;>Ä寨 1ÊÙµ>^ÅD § 5.1 (4) ?¿mCz|£©þ¤§ÏL Fourier C§¤ F (r~, t) = 1 2π Z +∞ −∞ F(r~, ω)e −iωtdω, F(r~, ω) = Z +∞ −∞ F (r~, t)e iωtdt Ïd§±ªÇgCþ [¡3ª (frequency domain) ]§Ã «ð¼§¤µ ∇ × E~ (r~, t) = − ∂B~ (r~, t) ∂t =⇒ ∇ × E~ (r~, ω) = iωB~ (r~, ω) ∇ · D~ (r~, t) = 0 =⇒ ∇ · D~ (r~, ω) = 0, ∇ × H~ (r~, t) = ∂D~ (r~, t) ∂t EÆ ÔnX Mï 4
经典电动力学导论 Let there be light 第五章:电磁波的传播§5.1 (4)任意随时间变化的场(分量),通过 Fourier变换,可写成 1 (r,t) F(r, w) 2丌 因此,以频率为自变量[称为在频域( frequency domain)],无源区的麦氏方程可写成: aB(r V×E(,t) V×E(T,u)=iuB3(r,u) at D(r,t)=0 Ⅴ·D(T,u) 0D(r, V×H(r,t) →V×(r,u)=-iuD(,u), at 复旦大学物理系 林志方徐建军4
Let there be light ²;>Ä寨 1ÊÙµ>^ÅD § 5.1 (4) ?¿mCz|£©þ¤§ÏL Fourier C§¤ F (r~, t) = 1 2π Z +∞ −∞ F(r~, ω)e −iωtdω, F(r~, ω) = Z +∞ −∞ F (r~, t)e iωtdt Ïd§±ªÇgCþ [¡3ª (frequency domain) ]§Ã «ð¼§¤µ ∇ × E~ (r~, t) = − ∂B~ (r~, t) ∂t =⇒ ∇ × E~ (r~, ω) = iωB~ (r~, ω) ∇ · D~ (r~, t) = 0 =⇒ ∇ · D~ (r~, ω) = 0, ∇ × H~ (r~, t) = ∂D~ (r~, t) ∂t =⇒ ∇ × H~ (r~, ω) = −iωD~ (r~, ω), EÆ ÔnX Mï 4
经典电动力学导论 Let there be light 第五章:电磁波的传播§5.1 (4)任意随时间变化的场(分量),通过 Fourier变换,可写成 1 (r,t) F(r, w) 2丌 因此,以频率为自变量[称为在频域( frequency domain)],无源区的麦氏方程可写成: XE(r aB(r V×E(T,u)=iuB3(r,u) at V·D(r,t)=0 Ⅴ·D(T,u) 0D(r, V×H(,t) ×T(r,u) wD(r,w at B 复旦大学物理系 林志方徐建军4
Let there be light ²;>Ä寨 1ÊÙµ>^ÅD § 5.1 (4) ?¿mCz|£©þ¤§ÏL Fourier C§¤ F (r~, t) = 1 2π Z +∞ −∞ F(r~, ω)e −iωtdω, F(r~, ω) = Z +∞ −∞ F (r~, t)e iωtdt Ïd§±ªÇgCþ [¡3ª (frequency domain) ]§Ã «ð¼§¤µ ∇ × E~ (r~, t) = − ∂B~ (r~, t) ∂t =⇒ ∇ × E~ (r~, ω) = iωB~ (r~, ω) ∇ · D~ (r~, t) = 0 =⇒ ∇ · D~ (r~, ω) = 0, ∇ × H~ (r~, t) = ∂D~ (r~, t) ∂t =⇒ ∇ × H~ (r~, ω) = −iωD~ (r~, ω), ∇ · B~ (r~, t) = 0 EÆ ÔnX Mï 4