MT-1620 Fall 2002 4 4101-14202-146 G Note: can reduce these for orthotropic, isotropic (etc ) as before Strain-Displacement Primary ou 11 au 12 2 Paul A Lagace @2001 Unit
MIT - 16.20 Fall, 2002 1 ε4 = G4 [− η41 σ1 − η42 σ2 − η46σ6 ] 1 ε5 = G5 [−η51 σ1 − η52σ2 − η56σ6 ] Note: can reduce these for orthotropic, isotropic (etc.) as before. Strain - Displacement Primary ε11 = ∂u1 (6) ∂y1 ε22 = ∂u2 (7) ∂y2 ε12 = 1 ∂u1 + ∂u2 (8) 2 ∂y2 ∂y1 Paul A. Lagace © 2001 Unit 6 - p. 6
MT-1620 al.2002 Secondi 13 2 23 2(y30y2 33 Note: that for an orthotropic material 13 4.E5-0(due to stress-strain relations) Paul A Lagace @2001 Unit 7
MIT - 16.20 Fall, 2002 Secondary ε13 = 1 ∂u1 + ∂u3 2 ∂y3 ∂y1 ε23 = 1 ∂u2 + ∂u3 2 ∂y3 ∂y2 ε33 = ∂u3 ∂y3 Note: that for an orthotropic material (ε23 ) (ε13 ) ε4 = ε5 = 0 (due to stress-strain relations) Paul A. Lagace © 2001 Unit 6 - p. 7