Simple cases study A link in pure rotation ©When point A is moving ME357 Design Manufacturing ll
Simple cases study A link in pure rotation Wh i t A i i When poin t A is moving ME357 Design & Manufacturing II
Simple cases study @/ A link in pure rotation Displac- ement R PA=pero RPA 2 Velocity A Vra=poje 十2 02 APA Acceleration A=pajere-pae 2 VPA =APA+A”PA ME357 Design Manufacturing Il
Simple cases study A link in pure rotation Displac - ement j PA p e θ R = Velocit y j PA p j e θ = ω V Acceleration j j θ θ 2 APA PA PA p je p e θ θ = − α ω = + t n A A A ME357 Design & Manufacturing II
Simple cases study When point A is moving Displac- 2 ement Rp=R+RPA RPA NPA NP Velocity 。=4+4 X =Va+pe(io) Accelerati Graphical solution: on VA Vp
Simple cases study When point A is moving Displac - ement RRR P = +A PA Velocit y G G G ( ω) θ V pe i V V V i P A PA = + = + G G G G Accelerati V pe ( i ω) = A + Graphical solution: on
Simple cases study +2 When point A is moving Displac- 2 ement Rp=R+RPA APA APA Velocity 。=4+pM 3 AA =V+pe(io) X Accelerati APA on A。=A+Ap4 APA AP APA -A-0'pe+iapei AA
Simple cases study When point A is moving Displac - ement RRR P = +A PA Velocit y G G G ( ω) θ V pe i V V V i P A PA = + = + G G G G Accelerati V pe ( i ω) = A + AAA GGG on 2 P A PA i i A AAA A pe i pe θ θ ω α = + =− + G
Coriolis Acceleration Position of slider 一02 AP脚 Rp=pe 02 Velocity of slider ,-pei Rp Transmission Slip velocity velocity 02 02 Acceleration: A,=peio+pe”(io)'+peia+ie”+pei0 Combining terms: -[(p-poi)+i(rg+2p Coriolis acc.occurs when a body has vslip and w Slip Normal Tangential Coriolis
Coriolis Acceleration i . R p p e θ = G Position of slider p p Velocity of slider i i θ θ G V pe i pe p = + ω Transmission Slip velocity velocity Acceleration: ( ) 2 i i i ii A pe i pe i pe i pe pe i p θ θ θ θθ = + + ++ ω ωα ω G ( ) ( ) 2 2 i A p p ip p e θ = ⎡ ⎤ − ω αω + + ⎣ ⎦ G Combining terms: Coriolis acc. occurs when A p p ip p e p ( ω αω ) ( 2 ) = ++ ⎡ ⎤ ⎣ ⎦ Slip Normal Tangential Coriolis a body has vslip and w