二、压杆失稳与临界压力: 1.理想压杆:材料绝对理想;轴线绝对直;压力绝对沿轴线作用。 2.压杆的稳定平衡与不稳定平衡: 稳定平衡 不稳定
16 二、压杆失稳与临界压力 : 1.理想压杆:材料绝对理想;轴线绝对直;压力绝对沿轴线作用。 2.压杆的稳定平衡与不稳定平衡: 稳 定 平 衡 不 稳 定 平 衡
STABILIYOF COMPRESSED COLUMN 3). loss of stability of compressed 4). Critical pressure of compressed columns column: Critical state corresponding Stable intermediate statenstable equilibrium equilibrium pressure Critical pressure: P
17 3).loss of stability of compressed column: 4).Critical pressure of compressed columns Stable equilibrium Instable equilibrium Critical state Critical pressure: Pcr corresponding pressure intermediate state
定 3.压杆失稳: 4.压杆的临界压力 临界状态 稳定平衡 对应的不 过 度 压力 稳定平衡 临界压力:Pe
18 3.压杆失稳: 4.压杆的临界压力 稳 定 平 衡 不 稳 定 平 衡 临界状态 临界压力: Pcr 过 度 对应的 压力
STABILLYOF COMPRESSED COLUMN 810-2 EULERS FORMULA OF THE CRITICAL PRESSURE OF SLENDER COMPRESSED COLUMNS 1\ Critical pressure for the column with two hinged ends Suppose the pressure has reached the critical value and the column has been in tiny bending state as shown in the figure. Start to determine the critical force with he deflective curve ① bending moment P M(x,y)=Pj BORRX L ●】L● @Approximate differential equation of the deflection curve M y M El ET P P V+y=y+ky=0, where: k El 19
19 §10–2 EULER’S FORMULA OF THE CRITICAL PRESSURE OF SLENDER COMPRESSED COLUMNS 1、Critical pressure for the column with two hinged ends: M(x, y) = Py y EI P EI M y =− =− ①bending moment: ②Approximate differential equation of the deflection curve 0, 2 + y = y + k y = EI P y EI P k = 2 where : P P x y P M Suppose the pressure has reached the critical value and the column has been in tiny bending state as shown in the figure. Start to determine the critical force with the deflective curve. P x L
§10-2细长压杆临界力的欧拉公式 一、两端铰支压杆的临界力: 假定压力已达到临界值,杆已经处于微弯状态,如图, 从挠曲线入手,求临界力。 ①弯矩:M(x2y)=Py XL 中②挠曲线近似微分方程: M P ET EI P M y E/y"+k21=0 其中2P E 20
20 §10–2 细长压杆临界力的欧拉公式 一、两端铰支压杆的临界力: M (x,y)=Py 假定压力已达到临界值,杆已经处于微弯状态,如图, 从挠曲线入手,求临界力。 y EI P EI M y =− =− ①弯矩: ②挠曲线近似微分方程: 0 2 + y=y +k y= EI P y EI P k = 2 其中: P x L P x y P M