ANALYSIS OFSTRESSAND STRAIN 6 Original element ( known element) Example 1 Plot the known elements of point A, B C sho own In the following figures 92g O M
6、Original element(known element): Example 1 Plot the known elements of point A、B、C shown in the following figures. tzx P P A A s sx x M P x y z B C s sx x B t xz C t xy t yx
六、原始单元体(已知单元体): [例1]画出下列图中的A、B、C点的已知单元体。 P soe P y ● M xz
tzx 六、原始单元体(已知单元体): [例1] 画出下列图中的A、B、C点的已知单元体。 P P A A s sx x M P x y z B C s sx x B t xz C t xy t yx
ANALYSIS OFSTRESSAND STRAIN 7、 Principal element、 principal planes、 principal stresses: y ① Principal element: y The element in which the shearing stresses in side planes are all zero 2 Principal Planes: The planes on which the shearing stresses are zero x 3 Principal stresses Normal stresses acting on the principle planes 4 convention of the order for three principal stresses In magnitude of the algebraic value 12a2=o3
7、Principal element、principal planes、principal stresses: Principal element: The element in which the shearing stresses in side planes are all zero. Principal Planes: The planes on which the shearing stresses are zero. Principal stresses: Normal stresses acting on the principle planes. convention of the order for three principal stresses: In magnitude of the algebraic value, s1 s 2 s 3 s1 s2 s3 x y z sx sy sz
七、主单元体、主平面、主应力: G 主单元体( Principal bidy): 各侧面上剪应力均为零的单元体。 色主平面( Principal plane) 剪应力为零的截面。 主应力( Principal Stress): 主平面上的正应力 a主应力排列规定:按代数值大小, 01202203
七、主单元体、主平面、主应力: 主单元体(Principal bidy): 各侧面上剪应力均为零的单元体。 主平面(Principal Plane): 剪应力为零的截面。 主应力(Principal Stress ): 主平面上的正应力。 主应力排列规定:按代数值大小, s1 s 2 s 3 s1 s2 s3 x y z sx sy sz
ANALYSIS OFSTRESSAND STRAIN 5 State of the triaxialStress State of stress that all the three principal stresses are not equal to zero 6 State of the biaxial stress State of stress that one principal stress is equal to zero o State of the uniaxial stress State of stress that one principal stress is not equal to zero Ox B
State of the uniaxial stress: State of stress that one principal stress is not equal to zero. State of the biaxial stress: State of stress that one principal stress is equal to zero. State of the triaxial Stress : State of stress that all the three principal stresses are not equal to zero. A s sx x tzx s sx x B t xz