经典电动力学导论 Let there be light 第五章 结论 (1)入射、反射、折射波频率相同:u=u=u (2)若取入射面为xz平面(如图),则ky=0 k′=0.k"=0 入射、反射、折射波矢共面,同在入射面内 (3)kx=k=ksin=ksin由于:k=k sine= sin 87 6=0入射角=反射角 (4)kn=kn= k sin e=k"sin0″由于:k"="Ve22 Sin √e11sin0=√e2H2sin6 212 Sin 6 e11 SIn 6 称为折射率 721 光学折射定律,Sne'slaw sinb〃 复旦大学物理系 林志方徐建军3
Let there be light ²;>Ä寨 1ÊÙµ>^ÅD § 5.2 kx = k 0 x = k 00 x , ky = k 0 y = k 00 y , ω = ω 0 = ω 00 (ص (1) \!!òŪÇÓµω = ω 0 = ω 00 (2) e\¡ xz ²¡£X㤧K ky = 0 =⇒ k 0 y = 0, k00 y = 0 \!!òÅ¥¡§Ó3\¡S (3) kx = k 0 x =⇒ k sin θ = k 0 sin θ 0 duµk = k 0 = ω √1µ1 =⇒ sin θ = sin θ 0 =⇒ θ = θ 0 \ = (4) kx = k 00 x =⇒ k sin θ = k 00 sin θ 00 duµk 00 = ω 00√2µ2 =⇒ √1µ1 sin θ = √2µ2 sin θ 00 =⇒ sin θ sin θ 00 = √2µ2 √1µ1 = n2 n1 = n21 n = r µ 0µ0 ¡òÇ sin θ sin θ 00 = n2 n1 = n21 1Æò½Æ§Snell’s law EÆ ÔnX Mï 3
经典电动力学导论 Let there be light 第五章 结论 (1)入射、反射、折射波频率相同:u=u (2)若取入射面为xz平面(如图),则ky=0=k=0,k”=0 入射、反射、折射波矢共面,同在入射面内 (3)kx=k=ksin=ksin由于:k=k sine= sin 87 6=0入射角=反射角 (4)kn=kn= k sin e=k"sin0″由于:k"="Ve22 Sin √e11sin0=√e2H2sin6 212 Sin 6 e11 SIn 6 称为折射率 721 光学折射定律,Sne'slaw sin e (5)kx=k=k,kn=k=k〃→k=k=k 复旦大学物理系 林志方徐建军3
Let there be light ²;>Ä寨 1ÊÙµ>^ÅD § 5.2 kx = k 0 x = k 00 x , ky = k 0 y = k 00 y , ω = ω 0 = ω 00 (ص (1) \!!òŪÇÓµω = ω 0 = ω 00 (2) e\¡ xz ²¡£X㤧K ky = 0 =⇒ k 0 y = 0, k00 y = 0 \!!òÅ¥¡§Ó3\¡S (3) kx = k 0 x =⇒ k sin θ = k 0 sin θ 0 duµk = k 0 = ω √1µ1 =⇒ sin θ = sin θ 0 =⇒ θ = θ 0 \ = (4) kx = k 00 x =⇒ k sin θ = k 00 sin θ 00 duµk 00 = ω 00√2µ2 =⇒ √1µ1 sin θ = √2µ2 sin θ 00 =⇒ sin θ sin θ 00 = √2µ2 √1µ1 = n2 n1 = n21 n = r µ 0µ0 ¡òÇ sin θ sin θ 00 = n2 n1 = n21 1Æò½Æ§Snell’s law (5) kx = k 0 x = k 00 x , ky = k 0 y = k 00 y =⇒ ~kτ = ~k 0 τ = ~k 00 τ EÆ ÔnX Mï 3
经典电动力学导论 Let there be light 第五章 结论 (1)入射、反射、折射波频率相同:u=u (2)若取入射面为xz平面(如图),则ky=0=k=0,k”=0 入射、反射、折射波矢共面,同在入射面内 (3)kx=k=ksin=ksin由于:k=k sine= sin 87 6=0入射角=反射角 (4)kn=kn= k sin e=k"sin0″由于:k"="Ve22 Sin √e11sin0=√e2H2sin6 212 Sin 6 e11 SIn 6 称为折射率 721 光学折射定律,Sne'slaw sin e (5kx=kr=k,ky=ka=k,=k=k 物理意义:光子切向动量守恒 复旦大学物理系 林志方徐建军3
Let there be light ²;>Ä寨 1ÊÙµ>^ÅD § 5.2 kx = k 0 x = k 00 x , ky = k 0 y = k 00 y , ω = ω 0 = ω 00 (ص (1) \!!òŪÇÓµω = ω 0 = ω 00 (2) e\¡ xz ²¡£X㤧K ky = 0 =⇒ k 0 y = 0, k00 y = 0 \!!òÅ¥¡§Ó3\¡S (3) kx = k 0 x =⇒ k sin θ = k 0 sin θ 0 duµk = k 0 = ω √1µ1 =⇒ sin θ = sin θ 0 =⇒ θ = θ 0 \ = (4) kx = k 00 x =⇒ k sin θ = k 00 sin θ 00 duµk 00 = ω 00√2µ2 =⇒ √1µ1 sin θ = √2µ2 sin θ 00 =⇒ sin θ sin θ 00 = √2µ2 √1µ1 = n2 n1 = n21 n = r µ 0µ0 ¡òÇ sin θ sin θ 00 = n2 n1 = n21 1Æò½Æ§Snell’s law (5) kx = k 0 x = k 00 x , ky = k 0 y = k 00 y =⇒ ~kτ = ~k 0 τ = ~k 00 τ Ôn¿Âµ1fÄþÅð EÆ ÔnX Mï 3
经典电动力学导论 Let there be light 第五章:电磁波的传播§5.2 (6)负折射 ( Science29277;5514) 思考:如图虚线所示的折射波也满足边值关系k=6 6 复旦大学物理系 林志方徐建军4
Let there be light ²;>Ä寨 1ÊÙµ>^ÅD § 5.2 (6) Kò (Science 292 77; 5514) gµXãJ¤«òÅ÷v>'X ~kτ = ~k 00 τ EÆ ÔnX Mï 4
经典电动力学导论 Let there be light 第五章:电磁波的传播§5.2 (6)负折射 ( Science29277;5514) 思考:如图虚线所示的折射波也满足边值关系k=k 是否存在虚线所示的折射波? 1280 复旦大学物理系 林志方徐建军4
Let there be light ²;>Ä寨 1ÊÙµ>^ÅD § 5.2 (6) Kò (Science 292 77; 5514) gµXãJ¤«òÅ÷v>'X ~kτ = ~k 00 τ ´Ä3 J¤«òź EÆ ÔnX Mï 4