Local analysis aGgregation demand function for l x(p)=∑x(p) oIt's continuous and non-increasing for 0<p<max;2(0) See the fig
Local analysis Aggregation demand function for l. It’s continuous and non-increasing for See the fig. 1 ( ) ( ) I i i x p x p = = 0 max (0) i i p
Local analysis ◆ s supply function (q)扩p>c7(0) q,(P)= 0.P≤c(0) (p)-c(a) <0jp>c;(0) ◆ Aggregation supply function q(p)=∑9(p) oIt's continuous and non-increasing for min. C See the fig
Local analysis j’s supply function Aggregation supply function It’s continuous and non-increasing for See the fig. 1 ( ) (0) ( ) 0 (0) j j j j j c q if p c q p if p c − = 1 ( ) <0 (0) ( ) j j j j q p if p c c q = 1 ( ) ( ) J j j q p q p = = min (0) j j p c