当前位置:
和泉文库 >
航空航天 > 麻省理工学院:《偏微分方程式数字方法》(英文版)Lecture 13 Finite Element Methods for Elliptic Problems
麻省理工学院:《偏微分方程式数字方法》(英文版)Lecture 13 Finite Element Methods for Elliptic Problems
Motivation The Poisson problem has a strong formulation; a minimization formulation; and a weak formulation. The minimization/weak formulations are more general than the strong formulation in terms of reqularity and admissible data.
文件格式:PDF,文件大小:589.72KB,售价:10.59元
文档详细内容(约37页)
The Dirichlet Minimization Principle Problem Proof 1 J(x+)=J(u)+ Vu.VdA,V∈X 2 >0 unless 0= 0 J(u)>J(u),V0∈X,w≠t a is the minimizer of (w) E1 SMA-HPO⊙1999M Variational Formulation 10
The Dirichlet Weak Formulation Problem Statement Find a∈ X such that 6J()=0,V0∈X Vu. VO dA f vdA Vu∈X see Slide 9 for proof SMA-HPO⊙1999M Variational Formulation 11
The Dirichlet Weak Formulation Problem Definitions Linear space. Y A set Y is a linear(or vector) space if V1,2∈Y,1+2∈Y Va∈i,Vw∈Y,a0∈Y SMA-HPO⊙1999M Variational Formulation 12
点击进入文档下载页(PDF格式)
共37页,试读已结束,阅读完整版请下载
点击购买下载(PDF)
下载及服务说明
- 购买前请先查看本文档预览页,确认内容后再进行支付;
- 如遇文件无法下载、无法访问或其它任何问题,可发送电子邮件反馈,核实后将进行文件补发或退款等其它相关操作;
- 邮箱: