ThermodynamicProcess AnalysisAdiabaticProcessRelationshipBetweenInitial&FinalStatec d7uz -u = / c,dTdqT因此,绝热过程中,可逆的绝热气体的保持不变,过程也称为定滴过程,isentropic
Relationship Between Initial & Final State Thermodynamic Process Analysis • Adiabatic Process 2 2 1 1 2 2 1 1 2 2 1 1 d d d 0 p v h h c T u u c T q s s T 绝热过程中,气体的熵保持不变,因此,可逆的绝热 过程也称为定熵过程,isentropic
Thermodynamic Process AnalysisAdiabaticProcessEnergyTransferq=0w = q-△u =l.c,dTw, = q - h = -l
Thermodynamic Process Analysis • Adiabatic Process Energy Transfer 2 1 2 1 0 d d v t p q w q u c T w q h c T
Thermodynamic Process AnalysisEnergy TransferApproximateAnalysisCp,Cvas constant during processc,dTc.dw, = - △h =w= q-△u== c,(T, - T2)p,V,w, = kwVk-RTk-1RTk-1
wt kw Thermodynamic Process Analysis Energy Transfer ü Approximate Analysis cp ,cv as constant during process 2 1 d w v q u c T 1 2 1 1 2 2 1 1 2 1 1 1 1 2 ( ) 1 ( ) 1 1 ( ) 1 1 ( ) 1 v k k k c T T p v p v k RT p k p RT v k v 2 1 d wt p q h c T
Thermodynamic Process AnalysisEnergyTransferExactAnalysisCp,Cvas changed during process1.AverageAdiabaticExponentkmpvkm = ConstAverageSpecificHeatf2Lork +k,k...:2
ü Exact Analysis cp ,cv as changed during process Thermodynamic Process Analysis Energy Transfer 1.Average Adiabatic Exponent km Const km pv 2 2 1 1 2 2 1 1 2 1 0 0 0 2 0 1 t t t p t p p m t t t v v v t c c t c t k c c t c t Average Specific Heat or 1 2 2 m k k k
ThermodynamicProcess AnalysisEnergyTransferExactAnalysisCp,Cvas changed during process2.UsingThermodynamic Properties of GasS2 - S, = s% - s% - Rln P2 = 0RelativePressurei02PR20RPiPR1PiXR
ü Exact Analysis cp ,cv as changed during process Energy Transfer 2.Using Thermodynamic Properties of Gas Thermodynamic Process Analysis 2 1 0 0 2 2 1 1 ln 0 T T p s s s s R p 2 2 1 1 0 0 0 2 0 1 exp( ) exp( ) exp( ) T T T T s p s s R p R s R Relative Pressure 2 2 1 1 R R p p p p