 递归的概念和典型的递归问题  阶乘、Fibonacci数列、hanoi塔等问题  分治法的基本思想  分治法的典型例子  二分搜索、矩阵乘法、归并排序、快速排序  大整数的乘法、最接近点对问题
文件格式: PDF大小: 3.02MB页数: 118
❑ 理解算法的概念。 ❑ 理解什么是程序,程序与算法的区别和内在联系。 ❑ 掌握算法的计算复杂性概念。 ❑ 掌握算法渐近复杂性的数学表述。 ❑ 掌握用C++语言描述算法的方法
文件格式: PDF大小: 2.02MB页数: 57
 6.1 Basic Concepts  6.2 Decision Tree Induction  6.3 Bayes Classification Methods  6.4 Rule-Based Classification  6.5 Model Evaluation and Selection  6.6 Techniques to Improve Classification Accuracy
文件格式: PDF大小: 2.8MB页数: 63
 4.1 The basic concept of association rules  4.2 Low-dimensional binary association rules  4.3 Multi-level association rules  4.4 Multidimensional association rules  4.5 The Affinity analysis based on the association mining
文件格式: PDF大小: 4.18MB页数: 42
电子科技大学:《数据分析与数据挖掘 Data Analysis and Data Mining》课程教学资源(课件讲稿)Lecture 04 Association Rules of Data Reasoning(FP-growth Algorithm)
文件格式: PDF大小: 2.59MB页数: 42
电子科技大学:《数据分析与数据挖掘 Data Analysis and Data Mining》课程教学资源(课件讲稿)Lecture 04 Association Rules of Data Reasoning(Apriori Algorithm、Improve of Apriori Algorithm)
文件格式: PDF大小: 2.4MB页数: 37
 5.1 Introduction of clustering analysis  5.2 Similarity calculation  5.3 Overview of basic clustering techniques  5.4 Partitioning method  5.5 Hierarchical method  5.6 Clustering based on density and grid  5.7 Clustering based on models  5.8 Outlier analysis
文件格式: PDF大小: 3.42MB页数: 78
 3.1 Learning Problems  3.2 The least square method (LSM)  3.3 Linear regression analysis  1 Simple Linear Regression  2 Multiple Regression  3 Understanding the Regression Output  4 Coefficient of Determination R2  5 Validating the Regression Model
文件格式: PDF大小: 4.63MB页数: 66
电子科技大学:《数据分析与数据挖掘 Data Analysis and Data Mining》课程教学资源(课件讲稿)Lecture 03 Regression Analysis(Logistic Regression)
文件格式: PDF大小: 2MB页数: 33
 2.1 Overview of data types  2.2 Review of Data pre-processing tools and platforms  2.3 Clean, storage and management of raw data  2.4 Collections of data analysis and data mining
文件格式: PDF大小: 2.64MB页数: 56
©2026 mall.hezhiquan.com 和泉文库
帮助反馈侵权